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This study investigates the effects of soil moisture (SM) on thermal infrared (TIR) land surface emissivity
(LSE) using field- and satellite-measurements. Laboratory measurements were used to simulate the effects of
rainfall and subsequent surface evaporation on the LSE for two different sand types. The results showed that
the LSE returned to the dry equilibrium state within an hour after initial wetting, and during the drying
process the SM changes were uncorrelated with changes in LSE. Satellite retrievals of LSE from the
Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) were
examined for an anomalous rainfall event over the Namib Desert in Namibia during April, 2006. The results
showed that increases in Advanced Microwave Scanning Radiometer (AMSR-E) derived soil moisture and
Tropical Rainfall Measuring Mission (TRMM) rainfall estimates corresponded closely with LSE increases of
between 0.08–0.3 at 8.6 µm and up to 0.03 at 11 µm for MODIS v4 and AIRS products. This dependence was
lost in the more recent MODIS v5 product which artificially removed the correlation due to a stronger
coupling with the split-window algorithm, and is lost in any algorithms that force the LSE to a pre-
determined constant as in split-window type algorithms like those planned for use with the NPOESS Visible
Infrared Imager Radiometer Suite (VIIRS). Good agreement was found between MODIS land surface
temperatures (LSTs) derived from the Temperature Emissivity Separation (TES) and day/night v4 algorithm
(MOD11B1 v4), while the split-window dependent products (MOD11B1 v5 and MOD11A1) had cooler mean
temperatures on the order of 1–2 K over the Namib Desert for the month of April 2006.
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1. Introduction

Land surface temperature and emissivity (LST&E) products are
generated by a host of different sensors with varying spatial, spectral
and temporal resolutions. Examples are the Atmospheric Infrared
Sounder (AIRS) on NASA's Aqua satellite, the Moderate Resolution
Imaging Spectroradiometer (MODIS) on NASA's Terra and Aqua
satellite, the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
on the METEOSTAT Second Generation-1 (MSG), and the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on
Terra.

Since all these sensors use different retrieval methodologies for
generating LST&E products, it is important to assess their ability to
dynamically retrieve variations in LSE due to changes in surface soil
moisture (SM), vegetation cover and type, snow/ice dynamics, and
surface roughness. In this study we focus on the effects of SM on LSE
which can occur due to rainfall events, dew, or from snow melt for
example.
Previous studies on the LSE and SM dependence in the TIR are
limited, and have involved using laboratory and remote sensing
measurements to estimate the LSE and SM relationship for a variety of
different types of soils. Mira et al. (2007) showed that emissivity of a
variety of different soils varies from 1.7% to 16% with increasing SM
content in the quartz reststrahlen band between 8.2 and 9.2 µm, and
Salisbury and Daria (1992) found that an increase in SM of 7% resulted
in an emissivity increase of 5%. Ogawa et al. (2006) found that an
increase in monthly AMSR-E derived SM of 0.045 g/cm3 resulted in an
increase in MODIS emissivity of 10% at 8.55 µm over North Africa
during July and August. A more recent, and interesting study by
Scheidt et al. (2010) used diurnal surface temperature differences
combined with albedo data from ASTER to estimate the apparent
thermal inertia (ATI). A case study at White Sands, New Mexico
showed that ATI had the potential for monitoring variations in SM,
grain size, and sand transport of dune systems.

The LSE plays an important role in surface–atmosphere interac-
tions as well as estimating Earth's surface radiation budget. Surface
radiation estimates are in turn used to compute important climate
variables such as land surface and air temperature (Zhou et al., 2003).
A study by Zhou et al. (2003) found that the broadband soil emissivity
(BBE) over semi-arid regions such as Northern Africa and Arabian
Peninsula in the window region (8–13.5 μm) are too high (0.96), and
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sensitivity tests using the recently developed Community Land Model
(CLM3) (Oleson et al., 2004) indicate that a decrease in emissivity of
0.1 (10%) will result in an increase in LST of 1 °C, and decrease in net
longwave radiation of 7 W/m2. Using MODIS data, another study by
Ogawa et al. (2008) found awide range of BBE's (8–13.5 µm) over arid
regions ranging from 0.86 to 0.96, with maximum variations of 0.03
(3%) at three selected sites which corresponded to increases in AMSR-
E derived surface SM. Consequently, SM effects on LSE should be
accounted for in order to improve LSE characterization in climate
models andminimize errors in model simulated surface temperatures
and ground fluxes.

In this study we address the following three important science
questions related to the LSE and SM dependence using laboratory
measurements and remote sensing observations. Firstly, on what
timescale does the LSE reach an equilibrium state after precipitation
events? In other words, how long does the bare land surface take to
completely dry after wetting, where TIR observations are sensitive to
the first few micrometers of the land surface? Secondly, are AIRS,
MODIS, and ASTER LST&E retrieval algorithms able to capture LSE
variations due to SM changes after precipitation events? And thirdly,
what is the magnitude of the LSE increase after precipitation events as
observed from space, and how is it correlated to the SM change?

Initially we outline a laboratory experiment to investigate the
temporal LSE variation of two water-saturated sand samples in order
to simulate a rainfall event. We then investigate SM effects on LSE for
an anomalous rainfall event over the Namib Desert in Namibia during
April 2006 using three different LST&E retrieval algorithms applied to
MODIS data, and the current AIRS standard version 5 retrieval.

2. Laboratory measurements

The variation of LSE with SM should depend on factors such as
mineralogy, particle size, and organic matter content of the soil
sample (Mira et al., 2007). In this study two sand samples with
varying mineralogy and particle size were chosen for analysis. The
sand samples were collected from the Great Sands National Park,
Colorado, and Coral Pink Sands, Utah in the USA and previously used
to validate the North American ASTER Land Surface Emissivity
Database (NAALSED) v2.0 (Hulley & Hook, 2009b; Hulley et al.,
2009a). X-Ray Diffraction (XRD)measurements showed that the Coral
Pink sand was composed of medium-grained pure quartz, while the
Great Sands sample contained amixture of medium-to-coarse grained
quartz, feldspar, and magnetite. Neither sample had any clay nor
organic matter present and so the particle size difference between the
samples would have a negligible effect on SM and LSE dependence.
We expect the mineralogy to play a larger role, since the Great Sands
samples have darker material consisting of feldspars and magnetite.

2.1. Experimental setup

First, small Petri dishes (1.5 cm height, 6 cm diameter) were filled
with sand from Coral Pink (CP) and Great Sands (GS). Water was then
added to each sample and allowed to infiltrate until the saturation
point was reached, i.e. when all soil pores were filled with water and
there was no air left in the soil. The gravimetric method was used to
determine the SM content of each sample and is expressed as weight
ratio of water present in the sand to the dry weight of the sand
sample.

The directional hemispherical reflectance of the water-saturated
samples were then measured using a Nicolet 520 Fourier transform
infrared (FT-IR) spectrometer with an integrating sphere, and
converted to emissivity using Kirchhoff's law. The uncertainty
associated with the FT-IR lab emissivity is 0.002 (0.2%) (Korb et al.,
1999). Reflectance spectroscopy measurements are more well suited
to this study since in emission spectroscopy, samples typically have to
be heated to high temperatures (e.g. 80 °C) to improve signal-to-noise
which could change the evaporation rate of the sample. Furthermore,
Salisbury et al. (1994) showed that emissivities calculated from lab
measurements using reflectance and emittance methods are equally
valid, but a measurement of emissivity is far more complex compared
to a measurement of reflectance, due to multiple sources of error
involved. After each reflectance measurement, the samples were
placed outside to dry. Emissivity measurements were subsequently
made every hour throughout the day, starting at 8 am, and ending
when the dry equilibrium state had been reached, and all SM had
evaporated. The lab measurements took approximately 10 min,
before samples were taken back outside to dry. Hourly measurements
of air temperature, pressure, relative humidity, wind speed, wind
gust, and solar radiation were recorded from a meteorological station
nearby.

2.2. Results and discussion

2.2.1. Emissivity and soil evaporation relationship
The JPL lab emissivity data were convolved to the ASTER spectral

response for band 11 (8.6 µm), and the 8.6 um emissivity together
with the SM measurements and meteorological data are shown in
Table 1. The full resolution laboratory spectra ranging from 3 to 13 µm
are shown in Fig. 1 for the wet and dry samples from CP and GS. In
Fig. 1, the two characteristic quartz doublets are clearly visible for the
CP sample between 8–9.5 µm and 12–13 µm. The GS dry spectra have
less spectral variation, with emissivities greater than 0.85 in the TIR
(8–12 µm) due to the presence of feldspar and magnetite in the
samples, as opposed to a greater abundance of quartz in the CP sample.
Thewet emissivity spectra for both samples are high and spectrally flat
in the shortwave infrared (SWIR) region (3–5 µm), and TIR emissiv-
ities are approximately 10–15% higher in the quartz reststrahlen band
(8–9.5 µm) with similar spectral features as the dry sample spectra. In
the longwave 11–12 µm window, emissivity variation with SM is less
and ranges from0 to 3%. It is also interesting to note that themaximum
LSE's for both wet and dry samples in the longwave region near 12 µm
region are the same and independent of SM content.

Fig. 2 shows the temporal LSE change between measurements for
CP and GS samples with the lab measurements convolved to ASTER
bands 11 (8.6 µm), 12 (9.1 µm), 13 (10.6 µm), and 14 (11.3 µm). The
first noticeable observation is that the LSE decreases dramatically by
∼0.17 in the 8–9.5 µm range for CP and by 0.05 for GP within the first
hour of drying between 9 and 10 am. A second experimentwith the CP
sand showed that this sharp drop in LSE actually occurs within the
first 15 min of drying. The LSE stayed relatively constant during the
following 2h until midday, when it decreased further to the dry
equilibrium state in the hour following midday.

We hypothesize that the LSE change during the drying process
corresponds closely with the well-known three-stage soil evaporation
rate process (Idso et al., 1974; Ventura et al., 2006). In the first stage,
the evaporation rate is high and determined by the amount of energy
available to vaporize soil moisture in the upper layer, and is controlled
by atmospheric conditions. Stage 2 is reached when sub-surface soil
water cannot be transferred to the surface fast enough to meet the
evaporative demand (Idso et al., 1974), and evaporation rates depend
on soil hydraulic properties that determine the transfer of water
(primarily vapor) to the surface — a process commonly known as
wicking. In stage 3 the evaporation rate is small and constant and
determined by soil absorption characteristics (Lemon, 1956). These
three stages are indicated in Fig. 2. During stage 1, the LSE decreases
considerably in the first hour due to rapid evaporation from the top
surface layer, while during stage 2 the LSE remains fairly constant and
actually increases very slightly by few tenths of a percent (at 12:38 for
both CP and GS), most likely due to water (in either liquid or vapor
form) being transferred to the surface from the lower layers by a
process known as wicking. Once all the water in either liquid or vapor
form has been used up, the LSE decreases further by approximately 1%



Table 1
Data from laboratory emissivity measurements at 8.6 µm and 11.3 µm and gravimetric soil moisture measurements for two sand samples, CP (Coral Pink Sands) and GS (Great
Sands) taken every hour until the dry state had been reached. Also shown is the atmospheric data every hour taken from the meteorological station at JPL.

Time Lab emissivity
(8.6 µm)

Lab emissivity
(11.3 µm)

Soil moisture
(%)

Air temp
(°C)

Relative humidity
(%)

Wind velocity
(m/s)

Solar radiation
(W/m2)

CP 9:00 0.888 0.978 16.1 18.9 57.0 0.2 234
10:02 0.714 0.959 13.4 20.7 42.2 1.1 346
11:15 0.714 0.959 10.3 22.7 33.6 1.3 433
12:38 0.716 0.959 7.3 24.0 26.4 0.7 435
13:56 0.700 0.957 4.0 23.0 32.7 2.2 331
15:08 0.697 0.959 1.3 21.8 29.6 2.3 199
16:00 0.694 0.961 0.4 20.5 35.0 1.5 100
Dry 0.695 0.964 0.0 – – – –

GS 9:13 0.946 0.977 14.8 20.7 50.2 0.5 264
10:19 0.896 0.950 12.6 20.4 42.7 1.4 370
11:34 0.898 0.953 9.5 23.0 33.3 1.0 436
12:58 0.898 0.953 5.9 23.9 28.2 1.5 412
14:08 0.891 0.950 2.3 23.2 32.9 1.4 315
15:15 0.887 0.951 0.7 21.8 29.6 2.3 199
16:20 0.884 0.956 0.3 20.0 35.0 1.5 100
Dry 0.885 0.953 0.0 – – – –
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during stage 3 from hours 5–8 until the equilibrium dry state has been
reached.Wind conditions were calm throughout the day (max 2 m/s),
so the effects of wind speed on the evaporation rate were probably
small, leaving solar radiation as the primary factor for controlling the
amount of energy available for evaporation. The maximum air
temperature recorded (24 °C) coincided with the end of stage one
in which the solar radiation was also at a maximum (435 W/m2).

SM measurements show that the GS sample dried at a faster rate
than the CP sample from hrs 3–5 of drying (∼11:00–14:00), which
could be due to the GS samples consisting of darker material (quartz
mixed with feldspar and magnetite), resulting in the sample heating
up quicker than the light colored CP quartz grains. Grain size, bulk
density, and to a lesser extent organic matter content and porosity are
other contributing factors to evaporation rate differences between the
two samples.

2.2.2. Sun and shadow experiment
The final lab experiment used a sand sample from the Namib

desert in Namibia (Hulley & Hook, 2009a; Hulley et al., 2009b) to
Fig. 1. Laboratory emissivity spectra for a wet (dashed lines) and dry (solid lin
investigate sun and shadow effects on the evaporation rate, and
hence LSE change, by placing one sample in direct sunlight, and
the other behind an obstacle in complete shade during the drying
process. Since we know the kinetic energy of a molecule (e.g.
water) is proportional to temperature, we expect the direct solar
radiation to increase the evaporation rate due to an increase in
temperature of the surface molecules. Both samples were identical
in the total mass of sand and water used in each Petri dish. The
results are shown in Fig. 3 for ASTER bands 11–14. Once again the
sharp drop in LSE can be seen after the first hour with both
samples having close to the same LSE at all wavelengths (within
1% at 8.6 μm). Therefore, under these atmospheric conditions,
there was sufficient energy to evaporate moisture from the sand
surface within the first hour after wetting, regardless of whether
the sand was in shade or exposed to direct sunlight. At lower
temperatures, however, results may be different. Because of the
warm day, with temperatures approaching 30 °C, the SM of the
sun sample was close to 0% by 1 pm, whereas the SM of the
shadow sample approached 0% much later at 4:30 pm.
es) sand sample from Coral Pink Sands, Utah and Great Sands, Colorado.



Fig. 2. Laboratory measurements of sand samples from Coral Pink and Great Sands showing the emissivity variation over time starting with a fully saturated sample. The top left
panel identifies the three-stage soil evaporation rate process discussed in the text.

Fig. 3. Laboratorymeasurements of a sand sample from the Namib Desert showing differences in the emissivity variation over time between a sample left to dry in direct sunlight and
the other in shade.

1483G.C. Hulley et al. / Remote Sensing of Environment 114 (2010) 1480–1493



1484 G.C. Hulley et al. / Remote Sensing of Environment 114 (2010) 1480–1493
2.2.3. Emissivity spectral unmixing and implications for soil moisture
estimation

Using a time series of LSE observations over a given sand dune site
(e.g. Coral Pink Sands), we propose a method for estimating the SM
from the LSE variations by a technique known as spectral unmixing.
Spectral unmixing is the procedure by which a measured spectrum of
a mixed pixel is decomposed into a collection of endmember spectra
(e.g. sand and water), and a set of corresponding fractions, or
abundances, that indicate the proportion of each endmember present
in the pixel. For example, Ramsey et al. (1999) used a linear spectral
unmixing algorithm combined with spectral library endmember
minerals to investigate sand mineralogic variations and transport
sources at Kelso Dunes, California.

In this example, we use high spectral resolution lab measurements
and assume the two endmembers consist of pure sand (e.g. quartz)
and water only. However, in reality spectral unmixing of a mixed
scene over a semi-arid area could be problematic due to additional
spectrally flat endmembers such as vegetation, and also variations in
sand particle size, organic matter content, and mineralogy (e.g. clays,
magnetite, and hematite). The problem becomes more difficult when
considering multi-spectral satellite data, since less information is
available to resolve spectrally similar endmembers. In this case a
blackbody (emissivity=1) could be used as additional endmember
which would increase the spectral contrast of satellite measurements
which typically have shallower spectra than lab measurements.
Currently high spatial and spectral resolution data which would
allow a greater number of endmembers are unavailable, but it is likely
such data will be available in the future thereby enabling this
approach from space.

Fig. 4 shows spectral unmixing results for the GS and CP samples.
The unmixing linear least squares problem was solved using QR
decomposition. The two endmember spectra (water and dry sand) are
shown along with spectra of the saturated sand sample and a fit to the
saturated sample using spectral unmixing. For GS, the spectral
unmixing results yielded a 19% sand and 81% water contribution
and fitted the observed measurement closely with an RMSE of 0.0039.
For Coral Pink, the results yielded a 31% sand and 69% water
contribution with an RMSE of 0.0048.

The fraction of water in a mixed emissivity spectrum computed
from spectral unmixing can be used to estimate the soil moisture by
modeling the dependence for a range of different water contents in
the laboratory. In this study, we only show the dry and wet
(saturated) results for two different sand types, but the approach
could be extended to include more sand types in the future.
Fig. 4. Laboratory emissivity spectra of water, a fully saturated sand sample, a dry sand samp
and Coral Pink (right).
An application of the technique would be to model the water
fraction and SM dependence for sand samples from the Kalahari and
Namib desert (Hulley et al., 2009b) in the lab, and then using a series
of remote sensing LSE observations, the model could be applied and
used to estimate the SM changes corresponding to higher than normal
LSE values in the absence of vegetation cover change, or used in
combination with NASA's future Soil Moisture Active and Passive
(SMAP) mission scheduled for launch in the 2010–2013 time-frame.
Determining the spatial and temporal distribution of SM is a key
variable both in agricultural land use and degradation processes such
as erosion and desertification (Van Der Kwast, 2009). For example,
Thomas et al. (2005) showed that global warming in the 21st century
over Southern Africa would result in more droughts that could
potentially kill off plant and grass species that anchor and stabilize the
dunes of the Kalahari Desert. The result would be an increase in dune
surface erodibility causing large amounts of sand to become airborne
which would kill livestock and potentially threaten the livelihood of
millions of people in the surrounding farming areas.

3. Satellite retrievals

The following two sections firstly describe the various retrieval
methods used to produce LST&E products from the MODIS and AIRS
sensors, and then investigate the underlying source of differences
between themethods over the Namib Desert during April 2006, which
included a precipitation event toward the end of the month.

The continuous monitoring of multiple product versions and
algorithms from different data sources is essential for laying down a
baseline quality metric to which future climate datasets and trends
can be measured. For example, if two independent algorithms, using
either the same or different data sources yield similar results over
varying conditions, then a climatology built on either data source can
be trusted. If, however, the two datasets diverge, then the trends are
suspects.

3.1. AIRS

The AIRS is an infrared spectroradiometer onboard the Earth
Observing System (EOS) Aqua satellite that provides high spectral
resolution (2738 channels) observations of outgoing thermal infrared
emission from the Earth and atmosphere covering the 3.7–15.4 μm
range for climate research and weather prediction (Susskind et al.,
2003). The current AIRS v5 surface retrieval algorithm uses a
regression plus simultaneous solution approach to retrieve skin
le, and a fit to the fully saturated sample using spectral unmixing for Great Sands (left)
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temperature and spectral surface emissivity, with the initial regres-
sion based on a land surface emissivity model of laboratory
measurements (Fishbein et al., 2003). In this paper we use a daily,
level-2 product at 45 km spatial resolution with emissivity retrieved
at 39 wavelengths from 3.8–15 µm. Each wavelength is defined at a
hinge point, which sufficiently captures the spectral shape of any
emissivity spectrum. The v5 LSE product has been validated over the
Namib and Kalahari deserts in a previous study using ASTER data and
laboratory measurements (Hulley et al., 2009b).

3.2. MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a
multi-spectral imager onboard the Terra and Aqua satellites of NASA's
Earth Observing System (EOS), and has been the flagship for land
surface remote sensing since the launch of Terra in December 1999.
MODIS LST&E standard products (MOD11 from Terra, and MYD11
from Aqua) are generated by two different algorithms: a generalized
split -window (GSW) algorithm (product MOD11A1) and a physics-
based day/night algorithm (product MOD11B1). In addition we apply
the ASTER Temperature Emissivity Separation (TES) algorithm to
MODIS data as an independent source of comparison.

3.2.1. Day/night algorithm
The day/night algorithm is a physics-based algorithm produced in

the MOD11B1 product which solves the ill-posed TIR problem by
assuming the LSE stays constant during daytime and nighttime
observations, while retrieving two surface temperatures (Wan & Li,
1997). Using 14 pieces of information (day/night pairs for MODIS
bands 20, 22, 23, 29, and 31–33), 2 day/night LST's, 7 emissivities, 2
water vapor profiles, 2 air temperature profiles and one asymmetric
factor are solved for using a statistical regression and least squares
method.

In version 4 (v4) of the MOD11B1 product, the day/night
algorithm partially incorporates the GSW method (Wan & Dozier,
1996) and is generated on a sinusoidal projection with a spatial
resolution of 5 km (exactly 4.63 km). In version 5 (v5), the day/night
algorithm is fully incorporated with the GSW (Wan, 2008) with a
spatial resolution of 6 km (exactly 5.56 km). The initial values of
emissivities in band 31 and 32 from the GSW method, total column
water, and air temperature, are used as iterators in the solution of the
day/night algorithm. The tighter coupling of the GSW with day/night
algorithm in v5 has led to LSE's being overestimated in arid regions
(LST underestimated), and as a result an interim MOD11B1 product
version, termed version 4.1 has been generated, which uses the v4
algorithmwith v5 input products, and is currently being produced as a
continuation of the v4 data (Hulley & Hook, 2009a).

The day/night algorithm has been validated with in-situ measure-
ments for six cases in Railroad Valley and one case of snow cover in
Bridgeport, CA, and LST's agreed to within 1 K, but have a large
uncertainty due to the 5-km grid resolution (Wan et al., 2002). This
method is susceptible to cloud effects from nighttime observations,
and alsomay be inaccurate if the daytime and nighttime LSE are in fact
different, due to SM changes from rainfall or early morning dew
accumulation for example.

3.2.2. Generalized Split-Window (GSW) algorithm
The GSW algorithm is produced in the MOD11A1 product and

extends the SST split-window to land surfaces using the assumption
that a wide range of land cover types have stable emissivities in the
10.5–12.5 μm wavelength range, which fall within MODIS bands 31
and 32. The emissivity of these land cover types can then be classified
a priori, and a split-window technique applied as before with oceans
(Wan & Dozier, 1996). This algorithm is stable over densely vegetated
areas and water, but will be less accurate over semi-arid and arid
regions where the LSE's are more uncertain. Also, the GSW algorithm
will have problems in retrieving accurate surface temperatures over
areas affected by surface SM, due to changes in the longwave LSE.

3.2.3. ASTER Temperature Emissivity Separation (TES) algorithm
ASTER was launched on the Terra satellite in December 1999, and

has five spectral bands in the TIR (8–12 µm) with a spatial resolution
of 90 m. The standard surface temperature and emissivity products
for ASTER are generated by the Temperature Emissivity Separation
(TES) algorithm (Gillespie et al., 1998). TES uses surface emitted TIR
radiance data as input, which has been atmospherically corrected for
atmospheric transmission and path radiance. The downward sky
irradiance, an output of the atmospheric correction, is removed
iteratively. The ill-posed problem of separating temperature and
emissivity in TES is then solved by using an empirical relationship to
predict theminimumemissivity that would be observed from a given
spectral contrast, or minimum–maximum difference (MMD) (Kealy
& Hook, 1993; Matsunaga, 1994). The empirical relationship is
referred to as the calibration curve and is derived from a subset of
spectra in the ASTER spectral library (Baldridge et al., 2009). In this
study the TES calibration curve is modified for MODIS bands 29, 31,
and 32 and is computed from spectra of 90 different terrestrial
materials consisting of different rocks, soils, vegetation, snow, and
water from the ASTER spectral library and sand samples used in
validating the NAALSED (Hulley et al., 2009a). The resulting MODIS
calibration curve is given by

εmin = 0:950−0:7503⋅MMD0:8321

where εmin is the minimum emissivity for all three bands, andMMD is
the difference between theminimum andmaximum difference. Using
εmin, the full emissivity spectrum can then be recovered from the
emissivity band ratios.

TES is designed to retrieve accurate emissivities of mineral
substrates for applications of mineral mapping and resource explo-
ration. A validation campaign over nine sand dune sites in the
southwestern USA showed that TES retrieves emissivity to within
0.016 (1.6%) for a wide range of emissivities in the TIR (Hulley et al.,
2009a). A further advantage of TES is that is produces seamless images
with no step discontinuities, as might be introduced if a land
classification type algorithm was used.

The limiting factor on TES performance is the accurate calculation
of the atmospheric transmissivity and path radiance. Errors of more
than 2 K can be expected in humid conditions if the water vapor
content is not well characterized, and errors could be larger over gray
body surfaces where the calibration curve is particularly sensitive to
errors in atmospheric compensation (Gillespie et al., 1998). The TES
algorithm applied to MODIS data will from now on be referred to as
the MODTES product.

4. Namib Desert rainfall event

The following case study looks in detail at an anomalous rainfall
event over the Namib Desert in Namibia during April, 2006. The prime
objective of this study is to investigate the underlying source of
differences between the respective LST&E retrieval methods de-
scribed above, and to better understand the LSE/SM dependence using
additional SM and rainfall observations from the AMSR-E and TRMM
sensors.

4.1. The Namib Desert

The Namib Desert in Namibia is bordered to the north by the
Kuiseb River, the south by the Orange River, the west by the Atlantic
Ocean, and the east by the South African escarpment, and forms part
of the Naukluft–Namib National Park that occupies some 34,000 km2

and comprises some of the oldest (∼55 million years) and highest (up
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to 300 m) dunes in the world. The Namib is a hyper-arid ecoregion
and receives a low and highly unpredictable annual rainfall of
between 5 mm in the east and 85 mm in the west (Lovegrove,
1993). A combination of sub-tropical subsidence from the Hadley Cell
and cool coastal sea surface temperatures (SSTs) from the Benguela
current result in one of the driest deserts in the world, where the vast
expanse of shifting dunes are almost completely devoid of vegetation
except for sparse perennial grasses (White, 1983).

For the week of 16–22 April 2006, the Namib Desert experienced
an anomalous rainfall event where more than 100 mm of rain was
recorded within one week at the coastal town of Luderitz — six times
the long-term annual rainfall average of 16.7 mm (Muller et al., 2008).
Wet conditions over Southern Africa during this time resulted from a
combination of La Niña event and warming of the southeast Atlantic
Ocean. Daily rainfall data from the Namibian Meteorological Service
showed that Luderitz received 39.4 mm of rain on the 16th, 20 mm on
the 19th, 27.4 mm on the 20th, 11.2 mm on the 21st, and 2.6 mm on
the 23rd (Muller et al., 2008).

4.2. TRMM and AMSR-E observations

Precipitation data from the Tropical Rainfall Measuring Mission
(TRMM; http://trmm.gsfc.nasa.gov)were used to analyze the spatial and
temporal variations in rainfall over the Namib Desert during the April
2006 rain event. TRMM precipitation estimates are provided on a
0.25°×0.25° global grid from 50° N to 50° S with three-hourly estimates
(UTC) of precipitation (mm/h) during a given day. For this analysis we
used the TRMM-calibrated merger product that uses all TRMM Micro-
wave imager (TMI), AMSR-E, AMSU-B and SSM/I precipitation estimates.

Daily level-3 SM estimates (g/cm3) from the Advanced Microwave
Scanning Radiometer (AMSR-E) on Aqua (Njoku et al., 2003) were
extracted over the Namib area for the month of April 2006 in order to
Fig. 5. Tropical Rainfall Measuring Mission (TRMM) rainfall anomaly (mm) for April 2006 wi
stations at Luderitz and Walvis Bay are shown for references, along with the MODIS and AI
observe any correlations with the LSE variation and TRMM rainfall
estimates. The level-3 AMSR-E product (AE_Land3) is resampled to a
global cylindrical 25 km Equal-Area Scalable Earth Grid (EASE-Grid)
cell spacing and available from the National Snow and Ice Data Center
(NSIDC). The C-band (∼4–8 GHz) is most sensitive to SM, but only in
regions of low vegetation cover (Njoku et al., 2003). Since the
observation site chosen in this study is over sparsely vegetated dunes
in the Namib, we expect surface roughness and vegetation effects on
SM retrievals to be limited (Njoku & Chan, 2006).

4.3. MODIS analysis

4.3.1. Study site selection
The first step in investigating the LSE and SM relationship involved

pin-pointing areas that received heavy rainfall over the Namib during
the April anomalous event, and then looking for correlations between
LSE and SM observations over those areas.

Fig. 5 shows the TRMM total accumulated rainfall anomaly (mm)
over Namibia for the month of April, relative to the 2006 annual mean
rainfall. The anomaly image shows that heavy rainfall during April
2006was confined to the coast of Namibia and up to ∼50 km inland in
the north and southern parts (10–30 mm), and also parts of north-
west South Africa (∼20 mm). The TRMM results agree well with
rainfall anomaly estimates during April 2006 from the International
Research Institute for Climatology and Society (IRI) in bothmagnitude
and spatial extent (Muller et al., 2008).

Water is strongly absorbing in the quartz reststrahlen band
(8–9.5 µm), and sowe expectMODIS band 29 (8.55 µm) LSE to be the
most sensitive to changes in soil moisture. Fig. 6 (left panel) shows
the mean MODIS v4 LSE for the month of April, 2006 over Namibia
using the MOD11B1 tile, h19v11. The Namib Desert can be seen as an
area of low LSE (0.7–0.8) bordering the coastal region from Luderitz
th respect to the mean rainfall for 2006 over the Namib Desert, Namibia. Meteorological
RS study sites chosen for the emissivity analysis.

http://trmm.gsfc.nasa.gov
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in the south toWalvis Bay in the north. Fig. 6 (right panel) shows the
MODIS band 29 LSE anomaly for the month of April, relative to the
2006 annualmean LSE. Positive anomalies of between 2 and 6% in LSE
can be seen along the coast of the Namib Desert to within 50 km
inland which agrees well with positive rainfall anomalies from
TRMM. Large positive LSE anomalies along the Botswana western
border are most likely a result of seasonal vegetation cover changes
after rainfall events.

Using the TRMM rainfall and MODIS LSE anomaly map as a guide,
an area just north of Luderitz (26–26.5° S, 15.1–15.4° E)
corresponding to ∼60 MODIS 5 km pixels were selected for the
MODIS analysis, with the area indicated in Fig. 5.

4.3.2. Emissivity results
The TES algorithm was first used to retrieve temperature and

emissivity using The MODIS Level-1B calibrated radiance product,
MOD021KMfor all granules covering the study area during themonthof
April, 2006. The MODIS L1B radiances were first atmospherically
corrected using a new state-of-the-art MODTRAN 5 radiative transfer
modelwith spectral resolutiondown to0.1 cm−1 (Berk et al., 2005), and
input atmospheric profiles of temperature, humidity, and geopotential
height from the MODIS joint atmospheric product (MOD07). The
surface radiance and downwelling sky irradiancewere then input to the
TES algorithm to generate the surface temperature and emissivity
products. The MODTES output at 1 km resolution was aggregated to
5 km resolution and geolocated with the MOD11B1 product using the
MODIS reprojection tool. To eliminate cloud contamination and bad
quality data, Quality Control (QC) information included with the
MOD11B1product (MODIS LSTUsers guide, 2006)were used to remove
observations if the LSTwas not produced due to cloud effects, or the LST
was affected by nearby cloud or ocean.
Fig. 7. Temporal emissivity variations of MODTES, MODIS v4 and v5 LSE for bands 29 (8.55
TRMM rainfall estimates and AMSR-E derived soil moisture are shown at bottom left for co
Fig. 7 shows the MOD11B1 (day/night algorithm) v4 and v5 as
well as MODTES (TES applied to MODIS) temporal LSE change for
bands 29, 31 and 32 during April 2006, and the corresponding
temporal change in AMSR-E derived SM and TRMM rainfall. TRMM
data indicated light rainfall on the 4, 7, and 15th, while harder rain
fell on the 16th (10 mm), 19th (40 mm), and 20th (36 mm). There is
a clear pattern of elevated SM after these precipitation events
reaching a maximum of 0.12 g/cm3 on the 22nd — an increase of
∼0.08 g/cm3 from the dry observation on the 6th. Similar strong SM
and rainfall correlations between AMSR-E and TRMM have been
found in West Africa by Pellarin et al. (2008) and in Australia by
Draper et al. (2009). One interesting observation is that the AMSR-E
increase in SM response time appears to be on the order of 1–2 days
after the precipitation events. For example, rainfall on the 16th
resulted in elevated SM only on the following day, and heavy rainfall
on the 19 and 20th resulted in elevated SM two days later on the
22nd. Given that AMSR-E microwave observations are sensitive to
the top centimeter or less of the surface layer, and rapid infiltration of
surface water over this type of desert sand environment, one would
expect the response time to be much faster. As a result, this could be
less of an observational and more of an underlying algorithm issue.
TIR and microwave observations do not correlate well during the
rainfall events. For example, on the 22nd, the SM observed by AMSR-
E reached a maximum of 0.12 g/cm3 for the month, but the MODIS
LSE's for MOD11B1 v4 and MODTES were dry and around 0.8. This is
primarily because TIR observations are sensitive to the top few
micrometers of the surface layer, which dries much faster than
microwave penetration depth of around one centimeter. Further
work is required to develop a suitable quantitative relationship
between TIR derived LSE and microwave retrieved SM from remote
sensing observations.
µm), 31 (11 µm) and 32 (12 µm) during April 2006 over the Namib Desert, Namibia.
mparisons.
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4.3.2.1. MODTES. TheMODTES band 29 (8.55 µm) LSE showed a strong
correspondence with the rainfall events on the 19th (40 mm) and
20th (36 mm)with an increase in LSE up to 0.98 on the 21st. This is an
approximate 0.015 (15%) increase in LSE when compared to the dry
observations during the rest of the month. The LSE then decreases
back to just above 0.8 two days later on the 23rd, and remains at this
level for the rest of the month. The band 31 results show some
variability during the first two weeks, with mean LSE of ∼0.95, before
increasing above 0.98 after the rainfall event, similar to the band 29
results. The band 32 results are relatively stable during the month
around 0.97, with a much smaller increase (b0.5%) after the rainfall
events.

4.3.2.2. MOD11B1 v4. The MODIS v4 band 29 LSE results were stable
around 0.8 for the first two weeks, before showing an increase in LSE
up to 0.91 on the 21st, similar to the MODTES results. MODIS v4 band
31 showed a similar increase in LSE on the 21st as the MODTES result,
and interestingly a decrease in LSE or 3% after the rainfall event on the
21st. The assumption of the LSE not changing between day and
nighttime could have been violated in the day/night algorithm in this
case, resulting in errors in the spectral shape.

4.3.2.3. MOD11B1 v5. MODIS v5 retrieved LSE showed little, or no
correlation with SM or rainfall events for the April 2006 period, in all
bands. The v5 band 29 LSE's appear to be higher than theMODTES and
v4 results, by up to 10% in some cases. The band 31 and 32 results
were stable and constant throughout the month, with no variation
after rainfall events. In the MODIS v5 product, the day/night retrieval
is fully incorporated with the GSW algorithmwhich fixes band 31 and
32 LSE values depending on the land cover type. As a result, the
accuracy of the derived MODIS v5 LSE is degraded over arid and semi-
arid regions where LSE variations can be large, both spectrally and
spatially (Hulley & Hook, 2009a), and can vary depending on the SM
content. A similar split-window/land classification scheme is planned
for use in the LST&E products from the NPOESS Visible Infrared Imager
Radiometer Suite (VIIRS) sensor (Yu et al., 2005), and will likely yield
equally problematic results over arid regions, and when surface
conditions change due to surface SM.
Fig. 8.Mean and standard deviation in LSE for (a) 7 dry observations (23–29th) and (b) one
v4 and v5 products during April 2006. Note: MOD11B1 v5 retrieval was labeled as poor qu
4.3.3. Emissivity validation
The LSE results from the three different MODIS retrievals were

validated with laboratory measurements of sand samples collected at
Sossussvlei in the Namib Desert during July 2008. Details of the
sampling site, sand mineralogy and particle size are discussed in
Hulley et al. 2009b. Even though the sampling site and the study site
in this paper are in different locations, we expect the LSE results to be
similar since the coefficient of variation in LSE using a number of
ASTER scenes over the Namib was found to be small and less than 1%
(Hulley et al., 2009b), indicating the Namib dunes are for the most
part homogeneous in LSE. The directional hemispherical reflectance of
the eight samples collected were measured in the lab at JPL using a
Nicolet 520 Fourier transform infrared (FT-IR) spectrometer, and
converted to emissivity using Kirchhoff's law. The uncertainty
associated with the FT-IR lab emissivity is 0.002 (0.2%) (Korb et al.,
1999). Fig. 8 left panel shows dry emissivity spectra of MOD11B1 (v4
and v5), MODTES and lab results using dry observations from the 23
to the 29th of April. The right panel shows emissivity spectra for the
wet observation on the 21st of April. In order to simulate the wet
conditions on the 21st, the lab measurement was performed by
wetting one of the sand samples to saturation point. For the dry
observations, MODTES most closely match the lab results with a
combined mean absolute difference in all bands of 0.8%, followed by
MOD11B1 v4 with 1.0% and v5 with a 1.8% difference. For the wet
observation the MODTES difference was 0.7%, while MOD11B1 v4 was
higher at 2.8%. Unfortunately LSE was flagged as bad data on this day
for the MOD11B1 v5 product. It is interesting to note that all three
measurements show a decrease in emissivity from band 31 to 32,
which appears to be overestimated in the MOD11B1 spectra. Also, the
MODTES spectra are spectrally flat and very similar to a water
spectrum, indicating that there could have been standing water over
parts of the dune study site on that day.

4.3.4. Broadband emissivity results
Accurate estimation of the TIR broadband emissivity (BBE, 8–

13.5 µm) is essential for determining the surface radiation budget in
climate models (Zhou et al., 2003). A study by Ogawa et al. (2008)
found that the BBE typically varies between 0.86 and 0.96 in arid
regions with small seasonal fluctuations of less than 0.01 (1%) in
wet observation (21st) over the Namib Desert MODIS study site for MODTES, MOD11B1
ality on the 21st, and so the emissivity was set to a fill value in the final product.

http://dx.doi.org/10.1029/2009JD012351
http://dx.doi.org/10.1029/2009JD012351


Fig. 9. Temporal variation in the broadband emissivity (BBE) over the Namib Desert
MODIS study site for MODTES, MOD11B1 v4 and v5 products during April 2006.
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standard deviation. At a few study sites however, the BBE increased by
up to 0.03 (3%) which was qualitatively related to changes in surface
SM. Using the regression relationship developed in (Ogawa et al.,
2008) for estimating BBE from MODIS data, we computed the BBE for
the MOD11B1 and MODTES emissivity products for April 2006 shown
in Fig. 9. The MODTES and MOD11B1 v4 results showed a distinct
increase in BBE of up to 0.07 (7%) and 0.05 (5%) respectively on the
21st after rainfall from previous days. These BBE increases are
equivalent to approximately 4.6 W/m2 and 2.4 W/m2 changes in net
longwave radiation using the flux/emissivity sensitivity relationships
derived in Zhou et al. (2003). These values are significant when
considering that the current radiative forcing due to an increase in
Greenhouse gases is on the order of 2–3 W/m2.
4.3.5. Land Surface Temperature (LST) results
Fig. 10 shows the LST variation during April 2006 over the study

site for four different retrieval algorithms: the MOD11B1 (v4 and v5),
MOD11A1 which is generated using the GSW algorithm, and the
Fig. 10. Temporal variation in the land surface temperature (LST) for theMOD11B1 v4 and v5
2006.
MODTES product. The LST varied between 308 and 320 K for the first
two weeks before a sharp decrease to 298 K on the 18th, and 290 K on
the 21st due to rainfall on previous days. The LST then increased back
up to values above 305 K for the rest of the month as the surface
gradually dried out.

Scatterplots of the MODTES versus the standard MODIS LST
products in Fig. 11 show that MODTES and MOD11B1 v4 results
match the closest with an R2 of 0.96 and mean LST bias of −0.8 K,
even though there is some scatter at higher temperatures. The
MOD11B1 v5 and MOD11A1 results show consistently cooler
temperatures than the MODTES results with mean biases of 2.1 K
and 1.5 K respectively. This is largely because the LSE's are over-
estimated in the MOD11B1 v5 product as was shown in Figs. 7 and 8.
The good agreement between MODTES and MOD11B1 v4 LST is an
interesting result because they were generated by two completely
independent retrieval algorithms which give confidence in the results
of these two products in the absence of any real validation.
4.4. AIRS analysis

The Luderitz site could not be used to evaluate AIRS because of its
much larger field of regard (FOV, ∼45 km) than MODIS, and also
because of cloud clearing issues over mixed land types in close
proximity to the coastline. As a result, a second site was chosen
further inland in the northeastern corner of the Namib dunes at
approximately 24.5° S, 15.5° E which also showed heavy rainfall
during the April 2006 period (Fig. 5 anomaly map).

Fig. 12 shows the resulting AIRS retrieved LSE at 8.6 µm, SM
(AMSR-E) and TRMM temporal variations for the April 2006 period.
Up until the 15th, the AIRS LSE and AMSR-E derived SM were
relatively stable with mean values of 0.77±0.09 and 0.066±0.008 g/
cm3 respectively. The AIRS LSE are in good agreement with lab results
of a dry Namib sand sample (emissivity of 0.75) with a difference of
∼2%, a result consistent with AIRS v5 validation results over the
Namib desert discussed in Hulley et al. (2009b). TRMM indicated
rainfall of 1 mm and 19 mm on the 15th and 16th respectively, which
caused a significant increase in the AIRS retrieved LSE with a value
greater than 1.0 on the 17th. This unphysical value is a result of the
, MOD11A1 andMODTES products over the Namib Desert MODIS study site during April

http://dx.doi.org/10.1029/2009JD012351


Fig.11. Land surface temperature (LST) scatterplots between MODTES and MOD11B1 v4 and v5, and MOD11A1 products during April 2006 over the Namib Desert MODIS study site.

1491G.C. Hulley et al. / Remote Sensing of Environment 114 (2010) 1480–1493
AIRS LSE being retrieved along with an approximation of associated
errors in order to give an unbiased estimate. As a result, AIRS retrieved
LSE is limited to be less than 1.05, instead of 1.0. Nevertheless, this
result still shows that the AIRS LSE retrieval algorithm is sensitive to
changes in SM, and in v6, the unphysical values will be mitigated
(Susskind & Blaisdell, 2008). TRMM cumulative rainfall on the 19th
was 20 mm, although rain showers started early evening (18:00 UTC,
20:00 local), with a result that the AIRS LSE observation earlier in the
afternoon pass was still dry (∼0.75). The LSE increased again on the
20th by as much as 15% due to rainfall on the 20th (18 mm). On the
Fig. 12. Temporal emissivity variations of AIRS v5 LSE at 8.6, 11 and12 µm during April 200
moisture are shown at bottom left. Wet and dry lab measurements of Namib sand samples
26th, the LSE had reached dry equilibrium state again of approxi-
mately 0.75. Similar to the Luderitz site, there is clear pattern of
elevated AMSR-E derived SM subsequent to each rainfall event with
increases of 0.3 and 0.02 g/cm3 on the 17th and the 22nd.

5. Conclusions

The goal of this study was to better understand the soil moisture
(SM) and land surface emissivity (LSE) dependence using laboratory
and remote sensing measurements, and to investigate the underlying
6 over the Namib Desert, Namibia. TRMM rainfall estimates and AMSR-E derived soil
are shown as reference.
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source of differences between current LST&E retrieval methods from
the MODIS and AIRS sensors for an anomalous rainfall event over the
Namib Desert in Namibia during April 2006.

Laboratory measurements showed that the LSE at 8.6 µm of two
different sand sources increased by 0.17 (17%) for Coral Pink Sands
and 0.05 (5%) for Great Sands after wetting and returned to within 1%
of the dry equilibrium state within one hour of drying. Since this was a
controlled experiment in which the total water content in each
sample was limited by the size of the Petri dish, under real conditions,
SM in the top surface layer may persist for longer periods of time due
to factors such as intensity and length of rainfall events, atmospheric
conditions, increased organic matter content, and grain size. In the
longwave 11–12 µm window, LSE variation with SM was less and did
not exceed 3%. The LSE change from a fully wet state to the dry state
was found to be qualitatively related to the well-known three-stage
soil evaporation rate process, even although the SM changes
throughout the drying process were relatively constant and uncorre-
lated with the LSE change. Lab measurements also showed no
significant LSE variation with SM between sand samples exposed to
direct sunlight, and sand samples left in t he shade during the drying
process. This indicates that direct solar radiation was not the limiting
factor on the evaporation rate for the atmospheric conditions in this
case. Using a linear spectral unmixing approach, we showed the
potential for modeling the fractional water contribution in a mixed
LSE spectrum to the corresponding SM content of the sample being
measured in the lab. This has implications for estimating SM changes
over arid regions using TIR emissivity measurements alone, provided
the dry LSE state is known a priori. It should also be noted, however,
that since TIR measurements are only sensitive to the top few
micrometers of the surface; rapid drying of the surface layer after
rainfall events in desert regions would make it difficult to observe
these short-term changes from space, which would make correlation
with SM content of the top few centimeters of the soil difficult.
Nonetheless, we have clearly observed the effect from satellite data.

The AIRS, MOD11B1 v4, and MODTES products showed positive
increases in retrieved LSE of between 0.11 and 0.30 (11–30%) at
8.6 µm due to elevated SM after rainfall events over the Namib Desert
in Namibia, while no noticeable change was observed for the
MOD11B1 v5 LSE product due to a stronger coupling with the
Generalized Split-Window (GSW) algorithm which holds the LSE
constant in bands 31 and 32. LSE changes were less than 3% for bands
31 and 32. The LSE variations were qualitatively correlated to rainfall
estimates from TRMM, and SM estimates from AMSR-E. It was also
found that there is a delayed response of 1–2 days between rainfall
events and AMSR-E derived SM. Validation of LSE with sand samples
collected over the Namib showed that MODTES product most closely
matched the lab results with a combined mean absolute difference in
all bands of 0.8%, followed by MOD11B1 v4 with 1.0% and v5 with a
1.8% difference.

LST comparisons between MODTES and the standard MODIS
products showed that MODTES and MOD11B1 v4 results agreed very
well with an R2 of 0.96 andmean LST bias of−0.8 K. TheMOD11B1 v5
and MOD11A1 LST's were cooler than MODTES with mean differences
of 2.1 K and 1.5 K respectively, a result of the LSE being overestimated
in these two products.

The continuous monitoring of multiple product versions and
algorithms from different data sources is essential for laying down a
baseline quality metric to which future climate datasets and trends
can be measured. A good example of this is the good agreement in LST
between the MODTES and MOD11B1 v4 products which are produced
by two independent retrieval algorithms. As a result, a climatology
built on either data product can be trusted, whereas if the results of
two datasets diverge, then the trends in either are suspect in the
absence of rigorous validation.

The ability of retrieval algorithms to observe changes in the LSE
after precipitation events is important since the changes can be
significant (8–30% at 8.6 µm, and up to 3% between 11 and 12 µm),
which could introduce substantial errors in the land surface
temperature and net longwave radiation if not accounted for. To
illustrate this, the MODIS broadband emissivity (BBE) results here
showed increases of up to 7% in emissivity due to an increase in SM
after the Namib rainfall event. Sensitivity studies have shown that this
is equivalent to approximately a 5 W/m2 change in net longwave
radiation which is significant when considering the radiative forcing
due to greenhouse gases is currently in the 2–3 W/m2 range.
Furthermore, sensitivity studies for split-window algorithms have
shown that emissivity errors of only 0.5% in the 11–12 µm window
region can result in LST errors of up to 0.7 K. Split-window algorithms
using a land classification approach do not account for changes
surface SM, and careful consideration should be taken in employing
this technique in future missions such as VIIRS (MODIS follow-on).
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