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Abstract—Land surface temperature (LST) is a key indicator of
the Earth’s surface energy and is used in a range of hydrological,
meteorological, and climatological applications. As needed for
most modeling and climate analysis applications, LST products
that are generated from polar-orbiting meteorological satellite
sensors have spatial resolutions from several hundred meters to
several kilometers and have (quasi) daily temporal resolution.
These sensors include the National Oceanic and Atmospheric
Administration Advanced Very High Resolution Radiometer
(AVHRR), the Earth Observing System Moderate Resolution
Imaging Spectroradiometer (MODIS), and the forthcoming
Visible/Infrared Imager Radiometer Suite (VIIRS) series, to be
flown onboard the National Polar-Orbiting Operational Environ-
mental Satellite System (VIIRS flights begin approximately 2009).
Generally, split-window algorithms are used with these sensors to
produce LST products. In this paper, we evaluated nine published
LST algorithms (or, in some cases, their slight variants) to deter-
mine those that are most suitable for generating a consistent LST
climate data record across these satellite sensors and platforms.
A consistent set of moderate-resolution atmospheric transmission
simulations were used in determining the appropriate coefficients
for each algorithm and sensor (AVHRR, MODIS, and VIIRS)
combination. Algorithm accuracy was evaluated over different
view zenith angles, surface–atmosphere temperature combina-
tions, and emissivity errors. Both simulated and actual remote
sensing data were used in the evaluation. We found that the
nine heritage algorithms can effectively be collapsed into three
groups of highly similar performance. We also demonstrated the
efficacy of an atmospheric path-length correction term that is
added to the heritage algorithms. We conclude that the algorithms
depending on both the mean and difference of band emissivities
(Group 1 in our nomenclature) are most accurate and stable over
a wide range of conditions, provided that the emissivity can be
well estimated a priori. Where the emissivity cannot be well esti-
mated, the Group 3 algorithms (which do not depend on the emis-
sivity difference) modified with the path-length correction term
perform better.
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I. INTRODUCTION

LAND surface temperature (LST) products are routinely
generated from moderate-resolution satellite data (e.g.,

Moderate Resolution Imaging Spectroradiometer (MODIS) on
the National Aeronautics and Space Administration’s (NASA)
Terra and Aqua platforms, Advanced Along-Track Scanning
Radiometer on the European Space Agency’s Environmental
Satellite) because they indicate the surface energy that is avail-
able at the land–atmosphere interface [1]. This information can
be used to help assess surface–atmosphere fluxes (e.g., water,
carbon) [2], root-zone soil moisture, and to reveal climato-
logical trends when considered in a multiyear time series [2].
The latter application is among the most demanding because
climatological changes tend to be small and can often be
obscured by noise and natural LST variability.

To meet the data demands of climate-change monitoring
and science, the science community has increasingly called for
unified global products generated from a sequence of satellites
using “best practice” algorithms [4], [5]. Such products are
termed climate data records (CDRs) and can be more formally
defined as a “time series of measurements of sufficient length,
consistency, and continuity to determine climate variability and
change” [4]. NASA uses the same concept to define its Earth
System Data Records (http://lcluc.umd.edu/products/Land%
5FESDR/).

Several satellite CDRs already exist [5]. For example,
Stolarski and Frith [6] produced an ozone CDR extending from
1978 to 2006 through rigorous intercalibration of data from
solar backscatter ultraviolet and total ozone mapping spectrom-
eters. Casey and Reynolds [7] developed a relatively seamless
20-year CDR of sea surface temperature (SST) by reprocessing
the complete National Oceanic and Atmospheric Administra-
tion (NOAA) data archive as algorithm accuracy and sensor
calibration knowledge improved. These products can be readily
used for climate analysis and model forcing or assessment.

The development of a long-term moderate-resolution LST
record is likely best accomplished by using a succession of
polar-orbiting satellite sensors, including the Advanced Very
High Resolution Radiometer (AVHRR) (1978 to present),
MODIS (2000 to present), and extending forward with
Visible/Infrared Imager Radiometer Suite (VIIRS) (expected
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service from 2010 to approximately 2026). These sensors are
manifested on NOAA’s Polar-Orbiting Environmental Satel-
lites (POESs), NASA’s Earth Observing System (EOS) Terra
and Aqua satellites, and the future National POES System
(NPOESS) satellites, respectively. The first VIIRS launch will
be on the NPOESS Preparatory Project (NPP) (launch planned
for 2009), a four-instrument pathfinder version of an NPOESS
platform. Although NOAA plans just one more AVHRR launch,
the European Organisation for the Exploitation of Meteoro-
logical Satellites will continue AVHRR observations on its
three successive meteorological operational satellite platforms,
with the first one scheduled to begin on-orbit operations in
spring 2007. Together, the three basic sensor designs will pro-
vide a 50-year continuous data record (assuming full-NPOESS
implementation).

To estimate the surface “skin” temperature from these sen-
sors, most scientists rely on “split-window” (SW) algorithms
that are derived from a first-order Taylor-series linearization of
the radiative transfer equation in long-wave infrared spectral
bands [8]. The SW algorithms effectively provide atmospheric
correction of a brightness temperature measurement in one
spectral band (typically centered around 11-µm) given a bright-
ness temperature measurement in a second “spectrally close”
band (typically centered around 12-µm). They exploit the ten-
dency of atmospheric absorption to change more rapidly in
spectral space than in surface emissivity. The SW technique is
particularly favored for its simplicity and robustness. In most
cases, the SW LST algorithms simultaneously convert bright-
ness temperatures to skin temperatures, given the estimates of
the surface spectral emissivity.

Many flavors of the SW algorithms have been developed in
the past 15 years, and together, they provide a starting point
for developing a reliable and accurate CDR algorithm. Several
studies have intercompared published algorithms. For example,
Ouaidrari et al. [9] compared LST algorithms in their AVHRR
LST Pathfinder II data set and found that some SW LST
equations were less accurate for atmospheres with high water
vapor content. Vazquez et al. [10] showed that errors in surface
emissivities propagate through each algorithm in different man-
ners. Kerr [11] also performed an algorithm comparison and
concluded that selecting the best LST algorithm may depend on
knowledge of uncertainties in the water vapor and the surface
emissivity.

Unfortunately, each of the studies focused only on AVHRR
and was limited in a climatic and geographic scope. Although a
CDR algorithm that is applicable to multiple sensors (AVHRR,
MODIS, and VIIRS) should indeed leverage past advance-
ments, much work remains. Specifically, it is not clear which
of the published algorithms is the most accurate and robust
across the different sensors, given their unique characteristics
(e.g., bandpass widths and centers). New CDR-focused studies
must consider the full range of the Earth’s land and atmosphere
combinations. Furthermore, CDR products must be decontami-
nated from sensor and orbit artifacts. For example, LST angular
anisotropy was recently found in daily AVHRR products over
continental Africa [12]. These effects will vary for each sensor
type because each has a unique orbit and sampling geometry.
Finally, the conversion from brightness temperature to kinetic

temperature, which is intrinsic to an LST algorithm, requires
knowledge of the surface spectral emissivity. This parame-
ter is very difficult to measure at scales commensurate with
moderate-resolution satellite sensors. To our knowledge, all the
operational emissivity maps that are used with these sensors
are based on laboratory measurements. New approaches for the
dynamic estimation of emissivity from MODIS [13] are not yet
proven. Either way, it is likely that significant errors are present
in current maps. The sensitivity of the retrieved LST to these
errors varies with the algorithm and sensing system.

In this paper, we addressed several of the aforementioned
issues. Specifically, we sought to identify the most suitable
SW algorithm for simultaneous use with AVHRR, MODIS, and
VIIRS. Therefore, we systematically evaluated and compared
nine published algorithms (or their slight variants) developed
for moderate-resolution sensors. We created nine additional
algorithms by adding an atmospheric path-length correction
term to each published algorithm. The resulting 18 algorithms
were intercompared using simulated data, actual MODIS obser-
vations and products, and the algorithms’ mathematical differ-
entials with respect to surface emissivity (the input parameter
with the greatest uncertainty).

We evaluated and compared the algorithms’ performance as
a function of:

1) the spectral response functions of AVHRR (NOAA-14,
-16), MODIS (Aqua and Terra), and VIIRS (predicted);

2) cold (drier) versus warm (moister) atmospheric states;
3) view zenith angle;
4) Ts − Tair, i.e., the difference between LST and surface

air temperature (SAT) (2 m above ground level);
5) surface emissivity errors.

Following a description of the sensors, algorithms, path-
length correction term, and simulated satellite data, we compare
the algorithms according to the aforementioned criteria. We
then describe the performance results. We discuss these results
vis-à-vis the algorithm functional forms. Based on a compre-
hensive simulation analysis and MODIS data evaluation, we
recommend algorithms that are well suited for CDR develop-
ment and discuss considerations for adapting one algorithm for
use with the different sensors. Finally, we conclude with our
recommendation of the algorithm for CDR use.

II. ALGORITHMS AND DATA

A. AVHRR, MODIS, VIIRS Sensors

The sensors considered in this paper share some general
characteristics, but have different designs and band specifica-
tions. Each is a “whisk-broom”-type scanner (±∼56◦) with
moderate-resolution sampling (see Table I) and ground swaths
of 3399, 2330, and 3040 km (AVHRR, MODIS, and VIIRS,
respectively). The operational AVHRR sensor, which was orig-
inally designed in 1978 and updated twice since, has one detec-
tor per spectral band. This design requires a relatively fast scan
rate and, hence, a relatively wide spectral bandpass (Table I).
MODIS, which was designed as a state-of-the-art research sen-
sor in the 1990s, has ten along-track detectors per thermal spec-
tral band. Its scan rate is slower, and its bandpasses are narrower
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TABLE I
SPECTRAL AND SPATIAL RESOLUTIONS OF AVHRR, MODIS,

AND VIIRS THERMAL INFRARED BANDS

TABLE II
PUBLISHED LST ALGORITHMS EVALUATED IN THIS PAPER. ADOPTED ALGORITHMS (EXACTLY THE SAME EXCEPT THE

CONSTANT TERM): 1, 3, 5, 11, 15, 17. ADAPTED ALGORITHMS (WITH SLIGHT MODIFICATIONS): 7, 9, 13

(Table I). This potentially allows more accurate correction of
atmospheric effects relative to AVHRR. VIIRS, like AVHRR,
is designed for operational use and has similar bandpasses. It
has 16 along-track detectors per thermal spectral band (Table I).
The sensors’ horizontal spatial resolutions, or the ground in-
stantaneous fields of view, are also provided in Table I.

The sensors have other differences in their thermal bands,
in cluding the dynamic ranges, signal-to-noise ratios, quan-
tization, precision, geolocation and band-to-band registration.
These characteristics, however, are peripheral to the current
paper.

B. SW LST Algorithms

We considered many SW LST algorithms from the pub-
lished literature [14]–[24] and adapted nine for our analysis

(see Table II). The adapted algorithms, which are noted in
the table, were slightly modified from the originals for having
better separation within the nine algorithms. These algorithms
are hereafter referred to as the “base algorithms.” The heritage
algorithms for these were typically developed with different
assumptions and approximations and tested under different
environmental conditions. As the theoretical underpinnings are
not germane to our study, we refer readers to the original
publications for their development details.

The published coefficients of these algorithms were typically
determined by regression using simulated top-of-atmosphere
(TOA) brightness temperatures, together with the prescribed
model LST values. The coefficients were developed for use with
just one sensor. Because our paper concerns the applicability
over multiple sensors, we chose to reregress the algorithms
using a common database (described hereafter). This approach
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also eliminates biases from inconsistent regression approaches
or databases among the algorith developers.

C. Correcting for Path Angle Variability

As previously noted, the sensors considered here have wide
fields of view. McClain et al. [25] first pointed out that, at
high viewing angles, atmospheric absorption may be amplified.
Geometric analysis shows that the atmospheric path length at
the sensor’s edge-of-scan is at least 2.5 times higher than at
nadir. Path water vapor generally increases approximately pro-
portionally. If an SW algorithm’s coefficients are determined
for typical water vapor amounts in the vertical column, then al-
gorithm accuracy can significantly degrade at large view angles.
Of the base algorithms, only the standard MODIS algorithm
addresses this problem [14]. Specifically, the MODIS algorithm
uses unique equation coefficients determined for each 10◦ view
angle subrange (e.g., 0◦–10◦, 10◦–20◦, etc.).

An alternative way to address the magnification of water
vapor effects with increasing view angle is to add a path-
length correction term to the SW formulation. For SST retrieval,
Walton et al. [26] pointed out that, whereas the multiplicative
factor (T11 − T12) has been empirically found to improve
the accuracy of the SW equation, a term with the satellite
zenith angle provides an empirical correction for the off-nadir
path-length amplification effect. Recently, developers of the
NPOESS VIIRS LST SW algorithm applied a view zenith angle
term as a path-length correction [27]. Sun and Pinker [28]
proposed two SW LST algorithms for Geostationary Opera-
tional Environmental Satellite (GOES) satellites, which use a
similar path-length correction term. Sun and Pinker also applied
the algorithms to AVHRR data for temperature diurnal cycle
studies [29]. Currently, the GOES-R Algorithm Working Group
is using the path-length correction term in its LST algorithm
development [30].

In the present paper, we used the path-length correction term
of (T11 − T12)(sec θ − 1), where (T11 − T12) is the difference
in TOA brightness temperatures in bands 11- and 12-µm
(a quantity roughly proportional to the column atmospheric
absorption), (sec θ − 1) represents the path difference from
nadir, and θ is the view zenith angle. We added the path-
length term to each of the base algorithms, resulting in nine
additional algorithms. We hereafter use even numbers (2, 4, . . .)
to identify the modified algorithms, where an even-numbered
algorithm corresponds to the prior odd-numbered base algo-
rithm with the added path-angle term. For instance, algorithm 8
corresponds to the base algorithm 7 with the added path-length
term, i.e.,

Ts = C + A1T11 + A2(T11 − T12) + A3
1 − ε

ε

+A4
∆ε

ε2
+ B(T11 − T12)(sec θ − 1). (1)

D. Satellite Data Simulation

To evaluate the algorithms in a consistent manner, we de-
termined new coefficients for each algorithm from a com-

Fig. 1. Emissivity values of 78 virtual surface types. The values are gener-
ated by recombining the ∼11- and ∼12-µm spectral emissivity values from
Snyder et al.’s [32] surface-type measurements.

mon set of model-generated data. We used the atmospheric
radiative transfer model MODerate-resolution atmospheric
TRANsmission (MODTRAN) (version 4, revision 1) [31] to
determine the TOA radiances.

We defined 78 different land surface types by prescribing
unique surface emissivity values. First, 26 spectral emissiv-
ity values at around 11- and 12-µm were calculated from
Snyder et al.’s [32] emissivity classification data using the
MODIS Aqua sensor response functions (bands 31 and 32). Of
these, 14 represent the means of Snyder’s 14 surface classes
and the other 12 are those values combined with the estimated
uncertainties [32] (two of them are not unique). In an effort
to represent a wider range of the Earth’s natural variability,
we then recombined the 11 and 12-µm emissivity values from
the different samples to construct additional 52 “virtual surface
types.” Each virtual surface type was manually determined
through careful analysis of the variability in Snyder’s original
samples such that the virtual types were both realistic and yet
had adequate variation. Fig. 1 shows the distribution of these
emissivity values.

To prescribe atmospheric conditions, we used 60 daytime
cloud-free radiosonde profiles from the CrIS F98-Weather
Products Test Bed Data Package (NOAA88, Rev. 1.0, M.
Goldberg, personal communication, 1998). The profiles repre-
sent a variety of atmospheric conditions, covering a column
water vapor range of 0.5–5.8 g/cm2 and a SAT range of
260–304 K. They were collected near 1000h and 1500h local
time, which is close to the equator crossing times of the polar-
orbiting satellites that are considered here. The selected profiles
spanned a latitude range of 60◦S–70◦N. For each atmospheric
profile, we varied the prescribed LST as Tair − 15 K < LST <
Tair + 15 K, where Tair is the SAT that is provided with
the profiles. The range was chosen from Wan et al.’s [14]
work and our own measurements in the field (primarily in
Africa). For each ∆LST = 1 K increment in this range, we
iterated the sensor view zenith angle from 0◦ to 70◦, with a
10◦ increment.

TOA radiance values were calculated from each model run.
The TOA spectral radiance I(λ) was converted into a satel-
lite sensor-received radiance B(T, λ) by convolution with the
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Fig. 2. Sensor relative spectral response functions of the thermal infrared
bands for MODIS Aqua, MODIS Terra, VIIRS, AVHRR-14, and AVHRR-16.

sensor’s relative spectral response function RSR(λ). We ap-
plied the following formula for the conversion:

I(T, λ0) =

λ2∫
λ1

I(λ)RSR(λ)dλ

λ2∫
λ1

RSR(λ)dλ

(2)

where λ1 and λ2 are the lower and upper limits of RSR(λ),
as shown in Fig. 2 for MODIS Aqua, MODIS Terra, VIIRS,
AVHRR-14, and AVHRR-16. λ0 is the central wavelength of
the band defined as

λ0 =

λ2∫
λ1

λ · RSR(λ)dλ

λ2∫
λ1

RSR(λ)dλ

. (3)

The satellite brightness temperature for the band that is
centered at wavelength λ0 is calculated using the inversion of
the Planck function definition

T =
(

hc

kλ0

)
1

ln
(
(2hc2λ−5

0 )/I(T, λ0) + 1
) (4)

where h, c, and k are known constants (Planck’s constant, the
speed of light, and Boltzmann’s constant, respectively).

III. METHODS

We evaluated the algorithms using three primary methods:
1) an intercomparison of retrieval performance with the simu-
lation database as created with MODTRAN; 2) a comparison

Fig. 3. SAT as a function of the total column water vapor of the 60 measured
atmospheric profiles used in the simulation. The dashed line separates the
profiles into two groups: (Above the line) warmer/moister atmospheres and
(below the line) colder/drier atmospheres.

against the official MODIS LST product, where the tested
algorithms were applied to the same TOA MODIS brightness
temperature granules; and 3) a mathematical evaluation of algo-
rithm sensitivity to errors in the prescribed surface emissivity.
We did not evaluate the algorithms against the actual field
measurements as we believe this could be misleading for at
least four reasons: 1) LST algorithms are typically “tuned”
against such field measurements before developing long-term
global data sets, and to our knowledge, there is not a sufficient
number of high-quality field data sets over diverse global-
representative land covers to provide two independent statis-
tically significant sample sets (one for “tuning” and one for
performance testing); 2) most field measurements are at
the point scale, and approaches to spatially scale-up point
LST values to AVHRR/MODIS/VIIRS pixel sizes introduce
uncertainties that are not easily quantified (particularly in the
presence of structured surfaces with shadowing); 3) most field
measurements are collected at nadir geometries and are not
readily comparable to the off-nadir space-based samples (due
to both LST and emissivity angular anisotropy); and 4) most
field measurements are from broadband sensors, and the impre-
cise methods for determining and assigning emissivity values
induce additional uncertainty when comparing the resulting
LST against that from the relatively narrow-band space-based
multispectral imagers.

A. Algorithm Intercomparison Within the Simulation Database

Following the approach used in developing the official
MODIS algorithm [14], we stratified our simulated data accord-
ing to the atmospheric regime: 1) “cold” atmospheres, where
the SAT Tair is lower than 287 K (column water vapor ranged
from about 0.5 to 2.4 g/cm2) and 2) “warm” atmospheres,
where Tair is higher than 287 K (water vapor ranged from about
1.7 to 5.8 g/cm2). As shown in Fig. 3, this threshold roughly
coincides with the point where the air temperature versus water
vapor content relationship changes slope. This stratification
acknowledges the capacity of warm atmospheres to hold more
water vapor and the degradation of LST algorithm performance
with increasing water vapor.

Authorized licensed use limited to: Jet Propulsion Laboratory. Downloaded on April 28,2010 at 21:35:02 UTC from IEEE Xplore.  Restrictions apply. 



184 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 1, JANUARY 2008

To better simulate real satellite data, we added Gaussian-
distributed random noise to the modeled brightness tempera-
tures. We set the standard deviation (STD) of the distribution
to the sensor noise equivalent delta temperature values:
σ = 0.05 K for MODIS and VIIRS and 0.12 K for AVHRR14
and AVHRR-16.

Because surface emissivity is an independent algorithm vari-
able with relatively high uncertainty in practice, we also added
Gaussian-distributed random noise to the prescribed emissivity
values before conducting the regressions. The STD of the
emissivity noise was set to 0.005, which is 2.5 times the
digitization error of the MODIS emissivity product in bands 31
and 32.

Next, a regression analysis (emissivity values and TOA
brightness temperatures versus prescribed LST) was performed
to derive unique coefficients for each base algorithm and at-
mospheric condition (cold or warm). Following [14], the regres-
sions were separately performed for the different subranges of
the surface and air temperature differences, as well as for each
subrange of the view zenith angle. We chose bins of Ts − Tair

as follows: −15 to −5 K, −5 to 2 K, 2 to 7 K, and 7 to 15 K.
View zenith angle bins were defined in 10◦ angular increments
from 0◦ to 70◦. For the modified algorithms, we regressed
the algorithms using data over the full range of view angles
(0◦ to 70◦).

B. Algorithm Evaluation Against Official MODIS Product

We also evaluated the algorithms against the official MODIS
LST product (MOD11; Collection 4 reprocessing). Although
the MODIS LST does not represent absolute ground “truth,”
this product has been validated and shown to be accu-
rate within 1 K [33] (see also http://landval.gsfc.nasa.gov/
ProductStatus.php?ProductID=MOD11). In our previous
work, we successfully used the MODIS LST product for the
evaluation of the VIIRS LST algorithms [34]. Sixteen daytime
MODIS Aqua swath scenes (2340 km × 2330 km each) were
selected for this purpose; eight from June 2004, representing
warm atmospheric conditions, and eight from December 2004,
representing the cold atmospheric conditions. At least 50% of
the pixels in each scene were identified as “confident cloud
free” from the MODIS cloud-screening procedure. All scenes
were over North America.

Multiple supporting MODIS products were required for this
analysis. TOA brightness temperatures were derived from the
Level 1B radiance data (MOD02). The cloud screening was
performed using the Level 2 cloud mask (MOD35). The LST
(used as “truth”) and emissivity were obtained from the Level
3 MOD11, and the SAT was obtained from the Level 3 at-
mosphere profile product (MOD07). Swath geometric informa-
tion was obtained from MOD03.

We computed the STD of the differences between the re-
trieved LSTs of each test algorithm and the official product
(MOD11). The official product is based on [14], which is
identified as algorithm 1 in the present paper (recall Table II).
In MODIS operations, its coefficients are assigned from lookup
tables indexed by atmospheric temperature (warm and cold),
water vapor amount, and the temperature difference between

the surface (estimated) and the near-surface air. As needed,
an interpolation procedure more precisely determines the co-
efficients for each pixel. This interpolation procedure and the
coefficient stratification, as compared to our implementation,
presumably lead to higher accuracy in the official MODIS LST
product.

C. Theoretical Evaluation of Algorithm Formulations

In determining the algorithm coefficients in Section III-A,
we applied Gaussian noise to the emissivity values prior to the
regressions. As noted, we set the STD of the noise to 0.005.
In reality, MODIS emissivity uncertainty may be much higher
than that for a variety of reasons. For instance, a numerical
inversion process alone may introduce a residual standard error
in emissivity estimation of about 0.019 for the bands 31 and 32
[35]. The emissivity uncertainty will be even greater when es-
timated from land-cover mapping methods (e.g., [32]), because
global land-cover maps are typically not updated often and their
number of land-cover types is very limited.

Therefore, to estimate the sensitivity of each algorithm to
emissivity errors, we derived the partial derivatives ∂T/∂ε
and ∂T/∂(∆ε). The mathematical steps are provided in the
Appendix. To determine the values of the resulting equations,
we then prescribed reasonable values of temperature and emis-
sivity, as will be shown in Section IV.

IV. RESULTS

We systematically compared the algorithms’ performance for
the different satellite sensors, atmospheric conditions (warm
and cold), land-air temperature differences, view angles, and
sensitivity to the surface emissivity. Because the bias errors the
regression analysis described in Section III were very small
(less than 0.1 K), we characterize the algorithm performance
here in terms of the LST precision, which in this paper was
defined as the STD of the regressions. We made this decision
for two reasons: 1) the precision statistic is not affected by
the inevitable biases (offsets) in the radiation transfer model
and 2) LST bias errors are typically resolved through on-orbit
calibration of operational algorithms. Precision errors cannot
be resolved in a similar manner, and therefore, we believe that
precision serves as a more valuable and credible comparison
metric for this paper. The results are presented in the following
subsections.

A. Algorithm Similarity

For each of the 18 algorithms considered, we determined
the STD of the regression that is fit for every combination
of sensor, Ts − Tair subrange, atmospheric regime, and view
angle subrange. As an example, Fig. 4 shows the base algorithm
results for MODIS Aqua under cold atmospheric conditions.
The STD errors are presented as a function of the SAT dif-
ference (line patterns) and view zenith angle (x-axis). Three
distinct groups of similar algorithm behavior are obvious in
these results. For example, the results for algorithms 3 and
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Fig. 4. STD errors of the regressions of the LST algorithms (listed in Table II) against the simulation data for the MODIS Aqua sensor under the cold atmospheric
conditions.

11 are nearly identical in shape and magnitude. This led
to our formation of algorithm groups (see Table III). This
performance similarity among algorithm groups was apparent
for all sensors and atmospheric conditions (warm and cold; not
shown here).

Because of the performance similarity, we will provide
results in some cases hereafter only for one algorithm
representative of a group. Specifically, we will represent
Group 1 with algorithm 13, Group 2 with algorithm 9, and
Group 3 with algorithm 11. Other algorithms in a given group
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TABLE III
ALGORITHM STRATIFIED BY PERFORMANCE SIMILARITY

can be assumed to exhibit similar performance in both magni-
tude and trend.

B. Path-Length Correction

Regardless of algorithm or group, Fig. 4 reveals that the STD
error generally increased as the view zenith angle increased.
This effect was even stronger with warm atmospheres. This
result is expected because SW algorithms are sensitive to water
vapor in the view direction, and atmospheric path length (and
hence, path water vapor content) approximately increases with
sec(θ).

As noted in Section I, we attempted to account for this
view angle effect by introducing a path-length correction to
the base (odd-numbered) algorithms; these modified algorithms
were assigned with even numbers for clarity. To evaluate the
effectiveness of the path-length correction term, we investigated
the difference of the STD values between each base and as-
sociated modified algorithm. Recall that the base algorithms
were uniquely tuned through independent regression for each
10◦ view zenith angle subrange, and the modified algorithms
were regressed once simultaneously using all angles.

Fig. 5 provides examples of the view angle effect and
path correction results. Specifically, we show three different
STD errors: 1) LST_odd_all represents the base algorithms
regressed with simulated data over all view angles (i.e., without
using the 10◦ view zenith stratification); 2) LST_odd represents
the base algorithms independently regressed with data from
each successive 10◦ view zenith angle bin; and 3) LST_even
represents the even-numbered algorithms (base algorithm with
additional path-length correction term) regressed with data over
all angles (as per the LST_odd_all case). As expected, the
view angle effect is more obvious under the warm versus
the cold atmospheric conditions. This is particularly true for
algorithms 9 and 10 (representing Group 2). In the warm
atmosphere cases, the angle effect is more significant at small
view zenith angles. This is because when using one coefficient
set for all view angles, retrieval accuracy at small angles is
significantly worsened by the larger errors at large angles.
Most importantly, Fig. 5 shows that the differences between
the angularly stratified base algorithm (LST_odd) and modified
algorithm (LST_even) were negligible; the two approaches are
essentially equally effective. Given the greater simplicity of the
single-coefficient set used with the even-numbered algorithms,
we will only provide the results from the even-numbered algo-
rithms in the following subsections.

C. Sensitivity to Sensor

To better understand the algorithm sensitivity to the sen-
sor types, we evaluated the performance of each algorithm

Fig. 5. STD errors of the different retrieval methods performed on the
simulation data set where the Ts − Tair difference is in the range of 2–7 K.
In the plots, LST-odd_all represents the odd-numbered algorithms (base al-
gorithms) without view angle stratification (i.e., one coefficient set for all
the angles), LST_odd represents the odd-numbered algorithms with the view
zenith angle view angle stratification for the coefficient sets, and LST_even
represents the even-numbered algorithms (base algorithm with additional path-
length correction term). (Top, middle and bottom panels) Algorithms in groups
1, 2, and 3, respectively. (Left panels) Cold atmospheric conditions. (Right
panels) Warm atmospheric conditions. The results are for the MODIS AQUA
sensor. It is not clear which correction is superior after 50◦. It is likely that both
are degrading (at different rates) because most approximations of the radiative
transfer equation (e.g., the SW approach) markedly degrade at high view zenith
angles.

over the five sensors by comparing the mean precision error
computed over all view angles and all Ts − Tair values. The
results are given in Table IV where the overall STD value
is presented for the algorithm subgroups and for different
sensors. For each algorithm, the performance did not sig-
nificantly change across the different sensors, but the preci-
sion error over the warm atmosphere is about two to three
times higher than that over the cold atmosphere. Furthermore,
Group 1 outperformed Group 2, and both groups outperformed
Group 3. These differences were most apparent for colder
atmospheres.

Qualitatively, we found that the algorithms showed similar
trends and behaviors across the different sensors throughout our
paper. Therefore, for brevity, we generally show only the results
for MODIS Aqua when discussing the results below.

D. Performance With Atmospheric Condition

As stated in [14], the stratification of algorithm coefficients
by atmospheric condition improves retrieval performance. In
practice, however, determination of SAT can be difficult.
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TABLE IV
MEAN STDS [K] OF THE ALGORITHM REGRESSIONS FOR THE

DIFFERENT SENSORS. TABLE VALUE EQUALS THE MEAN

OF THE STD ERRORS OVER ALL Ts − Tair CONDITIONS

Without that knowledge, there is uncertainty as to which co-
efficient set (warm versus cold) to use with a given pixel. We
therefore evaluated the LST errors that would be incurred by
assuming the wrong atmospheric state, i.e., if algorithm coef-
ficients for a warm atmosphere were applied to data collected
over a cold atmosphere or vice versa.

The results differed by atmospheric regime and algorithm,
but were relatively consistent across the sensors. Fig. 6 shows
the results from the three representative algorithms for the
MODIS Aqua sensor, in which the additional STD error is
defined as the absolute STD difference between retrievals using
the correct and incorrect coefficients.

Several trends are evident in the results. First, algorithm
performance was sometimes highly sensitive to Ts − Tair. This
is most evident for Group 3. For Groups 1 and 2, the additional
errors were similar and relatively small for most Ts − Tair

cases, but were anomalously high with colder atmospheres
(top panel in Fig. 6) when −15 < Ts − Tair < −5. The latter
conditions can be common on clear nights in some regions.

Second, in most cases, the increased STD error is greater
when the warm coefficients were used with a cold atmosphere
(top panel) rather than vice versa (bottom panel). For in-
stance, the extreme case for cold atmospheres is algorithm 14
(representing Group 1), where the additional error is up to
0.70 K. For warm atmospheres, the extreme case is algorithm
12 (representing Group 3), where the additional error is up to
0.90 K.

In general, the increase in errors with colder atmospheres
is more significant than for warmer ones, considering that the
initial errors are much smaller for the former. The increase in

Fig. 6. (Top panel) Additional STD errors that occur if the coefficients derived
for the warm atmospheric conditions are used with the cold atmospheric
conditions (Bottom panel) Additional STD errors that occur if the coefficients
for the cold atmospheric conditions are used with the warm atmospheric
conditions. The results are for the MODIS AQUA sensor.
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Fig. 7. Additional STD errors that occur if the algorithm coefficients are
derived without stratification by the Ts − Tair differences in the simulation
database. The results are for the MODIS AQUA sensor.

errors over the warm atmospheres does not significantly vary
across different Ts − Tair values, except for Group 3 algorithms
as previously noted.

E. Performance With Ts − Tair

Wan et al. [14] demonstrated that algorithm performance sig-
nificantly improves if the algorithm is independently regressed
for the different subranges of Ts − Tair (the temperature dif-
ference between the land and surface air). To characterize this
effect for different algorithms, we stratified the simulation data
into four subranges of Ts − Tair and independently determined
the coefficients for each subrange. We compared the results
with those obtained without such stratification.

In Fig. 7, we show the additional STD error incurred when
there is no stratification of Ts − Tair. The three algorithm
groups generally performed similarly. The additional error for
cold atmospheres was relatively small for all conditions. This
suggests that stratification can be ignored for the cold condi-
tions. For warm atmospheres, however, the STD error increased
by about 0.4 K when the air and surface temperatures are
similar (−5 < Ts − Tair < 7 K). This agrees with the findings
of [14] and confirms that LST precision error can be signifi-
cantly reduced by stratifying coefficients by Ts − Tair in warm
atmospheric conditions. This finding was consistent for all the
algorithms in this paper.

F. Performance Against Standard MODIS LST Product

As noted in Section III, the aforementioned analyses are only
as good as the quality of the simulated satellite data. Con-

Fig. 8. STD of the performances of the modified algorithms against the
official MODIS LST product (MOD11). Note that the algorithm order on the
x-axis is arranged by group number and then by algorithm number. (Top panel)
Eight winter scenes of the MODIS Aqua data were used to represent cold
atmospheres. (Bottom panel) Eight summer scenes were used to represent warm
atmospheres. All MODIS scenes were collected over North America in 2004,
and each contains more than 50% cloud-free pixels.

sidering that all radiative transfer models require assumptions
that limit their accuracy, we evaluated the heritage algorithms
against the official MODIS LST product. Specifically, we used
precision (i.e., STD) rather than accuracy as a measure in
our evaluation process using the MODIS data, considering
that: 1) MODIS LST data may be biased in certain regions
and 2) the bias error (root-square difference between accuracy
and precision) of the LST algorithm may be resolved through
calibration in operational uses.

We determined the STD of the temperature difference be-
tween the LSTs derived using the modified algorithms and the
MODIS LST products, as shown in Fig. 8. The STDs were
stratified into four subranges of Ts and Tair difference. The
top panel was derived from eight MODIS Aqua scenes in the
winter of 2004, and the bottom panel was derived from eight
MODIS Aqua scenes in the summer of 2004. The basic trends
found in Sections IV-D and E were likewise found here. First,
the retrieval errors against the official product significantly
vary for the different subranges of Ts − Tair. The greater the
temperature difference, the greater the error.

Note that in Fig. 8, we also give the fraction of pixels in
each bin (see legend). For the majority of pixels, the LST is
close to the SAT, particularly for cold atmospheres. Therefore,
the error over the full range is close to the error derived for
the smallest |Ts − Tair| subranges. Table V gives the overall
errors of the algorithms, where the errors are weighted by the
mean of the errors for the different Ts − Tair bins, and the
weighting function is the fraction of pixels in each bin. For all
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TABLE V
OVERALL STD [K] OF THE PERFORMANCES OF THE MODIFIED

ALGORITHMS AGAINST THE OFFICIAL MODIS LST PRODUCT.
THE ERRORS ARE THE WEIGHTED MEANS OF THE VALUES

PLOTTED IN FIG. 8. THE WEIGHT IS THE FRACTION OF

PIXELS IN EACH Ts − Tair BIN

the algorithms, the errors against the MODIS LST are two to
three times smaller in the winter than in the summer when the
atmosphere is warmer and holds more water vapor.

We emphasize that the aforementioned results do not repre-
sent the STDs from “truth,” but are the STDs from the MODIS
MOD11_L2 product, which has been validated to about 1 K
uncertainty over several surface types (Wan, personal commu-
nication, 2005) [36]. Although the bias of the comparisons
between the retrieved LST and the MODIS LST were not our
primary focus for the aforementioned stated reasons, we found
that they were in a range from −0.26 to −0.30 K for the winter
case and from 0.70 to 0.89 K for the summer case, respectively,
for the different algorithms.

G. Sensitivity to Emissivity Errors

We evaluated the algorithms’ sensitivity to emissivity errors
using mathematical derivatives. Specifically, we derived the
algorithm differential [δ(LST)] using the equations listed in
Table II (see the Appendix) and plotted the temperature un-
certainty against the emissivity uncertainty. The sample results
(including the maximum and minimum sensitivities) are shown
in Fig. 9. In calculating the results, we assumed that: 1) the
mean emissivity and emissivity difference are 0.97 and 0.005,
respectively and 2) the brightness temperatures are 295 and
294 K for the 11- and 12-µm bands, respectively. It is clear
that the LST errors increase approximately linearly, and that
the magnitude of the errors can become very large (up to 6 K)
for fairly small errors in emissivity.

V. DISCUSSION

Perhaps our most surprising finding was the tendency of
multiple-heritage algorithms to perform very similarly over
the various tests. This grouping behavior occurred across at-
mospheric conditions, but was most obvious with cold at-
mospheric conditions. The performance similarities led to our
formulation of algorithm groups (Table III). We can now extend
Table III to include qualitative performance information for
cold atmospheres, as shown in Table VI.

A likely explanation for the performance similarity may be
the algorithms’ similar functional dependence on emissivity.
In Group 1, both the mean emissivity (ε) and the spectral
emissivity difference (∆ε) are used in the algorithm formulas.
In Group 2, emissivity in the 11-µm band is used instead of
the mean emissivity, and the spectral emissivity difference is
used together with the brightness temperature in the 12-µm
band. In Group 3, only the mean emissivity is used. Our tests
with simulated data suggest that the combined use of mean and
difference emissivity terms leads to more accurate retrievals
and stability over a wider range of conditions. It is therefore
encouraging that Group 1 has the most members.

It is important to point out, however, that the overall precision
of the algorithms that is given in Table VI is based on the as-
sumption that accurate emissivity information is available (i.e.,
the emissivity uncertainty is less than 0.005). In practice, this
requirement is hard to meet, and therefore, the LST precision
may be worse. Indeed, our results (see Fig. 9) suggest that
sensitivity to emissivity may be the most important factor in
selecting an LST algorithm, at least until accurate and validated
moderate resolution emissivity maps become available. It is
obvious that algorithms 11/12 (Group 3) are much less sensitive
to emissivity errors than those in Groups 1 and 2, because
Group 3 algorithms do not use an emissivity difference (∆ε)
term in their formulations. Note that because the uncertainty of
the emissivity difference is the sum of the two spectral emissiv-
ity uncertainties, the derived temperature uncertainty is signifi-
cantly enlarged. This is true for algorithms 13/14 (representing
Group 1 algorithms) and 9/10 (Group 2), as shown in Fig. 9.

Although Table VI lists only the base algorithms, the mod-
ified algorithms show the same grouping behavior and thus
belong in the same groups as their associated base algorithms.
Indeed, performance differences between the base and asso-
ciated modified algorithms were relatively small compared to
the differences between groups. In a few cases, the modified
algorithms outperformed the base algorithms (see Fig. 5).

In practice, the use of a modified algorithm, rather than
regressing a base algorithm over multiple view angle subranges,
is advantageous in that 1) it simplifies the regression analysis
and lookup table structure that are used to determine and store
the coefficients for operational algorithms and 2) it reduces the
number of algorithm variants that must be validated with the
sensor in orbit. We therefore suggest the modified algorithms
are more economical for large-scale applications.

The implications of our study on CDRs are mixed. The con-
sistency in algorithm results over different satellite sensors—
particularly in the warm atmospheric cases—is promising
(perhaps a prerequisite) for the development of a multidecadal
LST CDR. It is particularly worth noting that the results for
VIIRS and MODIS were so similar, despite the wide AVHRR-
like bandpasses on VIIRS. This may suggest that bandwidth
and band center specifications may be less important than the
degree to which the spectral response function has a more
Gaussian unimodal shape (recall Fig. 2). It is expected that
the VIIRS bands will exhibit such shapes, despite the fact that
AVHRR-16 did not.

The most obvious and consistent trend in our results was
the superior algorithm performance in cold rather than warm
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Fig. 9. Algorithm sensivity to emissivity errors for the three algorithm groups from Table IV (represented by algorithms 14, 10, and 12). The results are for a
mean emissivity of 0.97 and an emissivity difference of 0.005. The algorithm coefficients were derived from the MODIS Aqua simulation data over (left panel) the
cold and (right panel) warm atmospheres. Only the cases of extreme Ts and Tair differences are plotted. For each algorithm, the results for the other Ts − Tair

bins fall between the cases shown. The results for all the other algorithms considered in this paper fall between those of algorithms 12 and 14.

TABLE VI
ALGORITHM PERFORMANCE OVER COLD ATMOSPHERES BY GROUP

atmospheres. This was expected and relates to the relation-
ship between air temperature and water-holding capacity (i.e.,
Clausius-Clapyron equation) and the imperfect atmospheric
correction exhibited by the SW algorithms. This implies that
LST CDR precision could be better in colder locations (e.g.,
high latitudes) and during midlatitude winters. The same factors
(water vapor effects) explain the degradation in precision as
view zenith angle increases (Fig. 4 and Fig. 5). To minimize
this effect, a CDR algorithm might only use observations up
to about VZA = 50◦. This approach may be feasible at high
latitudes where multiple observations per day per satellite are
collected. However, at lower latitudes, cloudiness and small
swath overlap areas (or no overlap) from consecutive orbits
usually preclude view angle filtering of daily products. Interest-
ingly, however, all algorithms performed more consistently over
warm atmospheres. Although one might conclude that algo-
rithm choice is therefore less important in warm cases, the high-
precision errors in those cases suggest that algorithm selection
remains very important—even if the marginal improvement
is small.

A more significant concern is the performance degradation
for high values of Ts and Tair difference—paricularly over
warm atmospheres. This is particularly important at times of

day when the surface and air temperature differences are largest
(e.g., just before sunrise or just after noon). Unfortunately, these
times are often considered best for LST assessment because
they can reveal the diurnal temperature range—a potential
proxy for soil moisture [37]. Sampling at these times is also
desirable because the time rate of change in LST tends to be
lowest at these times such that edge-of-scan measurements on
opposite sides of a swath are most comparable.

It may be possible to decrease sensitivity to Ts − Tair

through the greater stratification of coefficients during regres-
sion analysis, adapting the approach used with the MODIS
operational algorithm for atmospheric temperature states. For
example, a two-step LST retrieval could be applied, where
the first retrieval is combined with air temperature information
(e.g., from forecast models, sounder data or climatology [38])
to estimate Ts − Tair, and that value is used to determine the
proper algorithm coefficient set for the final LST retrieval.

It is worth pointing out that we did not explicitly ensure
seamless algorithm performance across the cold and warm
threshold. That would indeed be an important concern if we
were to actually apply an algorithm to satellite data for pur-
poses of generating a data product. However, that criterion
is not required for our purposes of intercomparing algorithm
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performance across different sampling and environmental
conditions.

VI. CONCLUSION

We conclude that: 1) a unified and coherent LST CDR
developed with data from AVHRR, MODIS, and VIIRS is
possible using a single algorithm uniquely tuned (i.e., unique
coefficients) for each sensor; 2) an atmospheric path-length
term can be added to heritage LST algorithms to significantly
reduce their sensitivity to view zenith angle effects; 3) for
practical purposes, just three heritage SW LST algorithms
effectively exist because the published algorithms considered
here can be assigned to one of the three groups defined by
highly consistent performance characteristics; 4) precision er-
rors significantly increase as |Ts − Tair| increases, particularly
in warm atmosphere cases; 5) algorithms that depend on both
the band emissivities (ε11 and ε12) and the spectral emissivity
difference (∆ε) tend to be more accurate than other algorithms
when emissivity values are well known a priori, and 6) algo-
rithms that do not depend on the spectral emissivity difference
are less sensitive to emissivity errors and, thus, may be more
robust when land emissivity is not well known.

We conclude that a Group 1 algorithm would be best for CDR
development in areas where surface emissivity is well known
and varies little in time and space, such as over large semiho-
mogeneous land covers like deserts and dense evergreen forests.
In more heterogeneous conditions, we conclude that algorithms
3/4 (based on Prata and Platt [16] and Caselles et al. [17])
or 11/12 (based on Ulivieri et al. [21]) are preferable, given their
lower sensitivity to emissivity errors and acceptable precision
performance under different conditions.

APPENDIX

The total LST uncertainty δTs due to the emissivity uncer-
tainty can be explained in

δTs =
√

δT 2
1 + δT 2

2

where ∆T1 and δT2 represent the uncertainty contributed from
the uncertainties of emissivity (ε) uncertainty and emissivity
difference (∆ε), respectively. Take algorithm 14 as an example.
These two components are

δT1 =
(

A3 −
A4

ε2

)
δε

and

δT2 =
A4

ε
δ(∆ε).

Therefore, the total LST uncertainty for algorithm 14 is

δTs =

√[(
A3 −

A4

ε2

)
δε

]2

+
[
A4

ε
δ(∆ε)

]2

.

Similarly, the total LST uncertainty for algorithm 12 is

δTs =
√

[A3(T11 − T12)δε11]
2 + [A4T12δ(∆ε)]2.

Coefficients A3 and A4 were calculated in the regression
analysis using the simulation data. Considering that ε = (ε11 +
ε12)/2 and ∆ε = (ε11 − ε12), and assuming the emissivty
uncertainties in each band are the same, i.e., δε = δε11 = δε12,
the uncertainty of the emissivity difference is δ(∆ε) = |δε11| +
|δε12| = 2δε.
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